Mixtures of Gamma Priors for Non-negative Matrix Factorization Based Speech Separation

نویسندگان

  • Tuomas Virtanen
  • Ali Taylan Cemgil
چکیده

This paper deals with audio source separation using supervised non-negative matrix factorization (NMF). We propose a prior model based on mixtures of Gamma distributions for each sound class, which hyperparameters are trained given a training corpus. This formulation allows adapting the spectral basis vectors of the sound sources during actual operation, when the exact characteristics of the sources are not known in advance. Simulations were conducted using a random mixture of two speakers. Even without adaptation the mixture model outperformed the basic NMF, and adaptation furher improved slightly the separation quality. Audio demonstrations are available at www.cs.tut.fi/ ~tuomasv.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Component-Adaptive Priors for NMF

Additional priors for nonnegative matrix factorization (NMF) are a powerful way of adapting NMF to specific tasks, such as for example audio source separation. For this application, priors supporting sparseness or temporal continuity have been proposed. However, these priors are not helpful for all kinds of signals and should therefore only be used when needed. For some mixtures, only some comp...

متن کامل

Phoneme-Dependent NMF for Speech Enhancement in Monaural Mixtures

The problem of separating speech signals out of monaural mixtures (with other non-speech or speech signals) has become increasingly popular in recent times. Among the various solutions proposed, the most popular methods are based on compositional models such as non-negative matrix factorization (NMF) and latent variable models. Although these techniques are highly effective they largely ignore ...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Single-Channel Mixture Decomposition Using Bayesian Harmonic Models

We consider the source separation problem for single-channel music signals. After a brief review of existing methods, we focus on decomposing a mixture into components made of harmonic sinusoidal partials. We address this problem in the Bayesian framework by building a probabilistic model of the mixture combining generic priors for harmonicity, spectral envelope, note duration and continuity. E...

متن کامل

A Complex Matrix Factorization approach to Joint Modeling of Magnitude and Phase for Source Separation

Conventional NMF methods for source separation factorize the matrix of spectral magnitudes. Spectral Phase is not included in the decomposition process of these methods. However, phase of the speech mixture is generally used in reconstructing the target speech signal. This results in undesired traces of interfering sources in the target signal. In this paper the spectral phase is incorporated i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009